CBCS/B.Sc./Hons./3rd Sem./CEMACOR06T/2022-23

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2022-23

CEMACOR06T-CHEMISTRY (CC6)

Time Allotted: 2 Hours

Full Marks: 40

 $2 \times 3 = 6$

2

2 2

2

2

3

The figures in the margin indicate full marks.

Answer any three questions taking one from each unit

UNIT-I

- 1. (a) Justify or criticise the following statements:
 - (i) From the radius ratio $(r_+/r_- = 0.76)$, RbBr can adopt the CsCl structure but in practice it crystallises in the NaCl structure. A similar situation arises for KCl.
 - (ii) From the radius ratio, NH₄F is expected to crystallise in the NaCl structures like other $NH_4X(X = Cl, Br, I)$. But it crystallizes in the ZnS structure.
 - (iii) The lattice energies of silver halides are almost the same as that of alkali halides, yet they are insoluble in water.
 - (b) The dipole moment of KCl is 3.336×10^{-29} cm. The distance between K⁺ and Cl⁻ ion is 2.6×10^{-10} m. Calculate the % of ionic character of KCl $[e = 1.60 \times 10^{-19} \text{ coulomb}].$
 - (c) The dipole moment of NH₃ is 1.49 D but that of BF₃ is zero Why?
 - (d) Calculate the heat of formation (ΔH_f) of MgF₂ from its elements using Born-Haber cycle.

Sublimation energy of Magnesium, $(S) = 146.4 \text{ kJ mol}^{-1}$.

Dissociation of $F_2(D) = 158.9 \text{ kJ mol}^{-1}$.

Ionisation energy of Mg(g), $I(Mg^{2+}) = 2184.0 \text{ kJ mol}^{-1}$.

Electron affinity for $F(g) = -334.7 \text{ kJ mol}^{-1}$.

Lattice energy of $MgF_2(U_0) = -2922.5 \text{ kJ mol}^{-1}$.

- (e) Write down the resonating structure of SCN⁻ ion indicating the formal charges on each atom. Indicate which structure is most contributing and why?
- (f) Using VSEPR theory, predict the shape of SOF₄. Indicate the state of hybridisation of the central atom.
- 2. (a) Predict the shapes and indicate the state of hybridisation of the central atom for the following:
 - (i) XeOF₄

(ii) I_5^-

(iii) PCl₃Br₂.

CBCS/B.Sc./Hons./3rd Sem./CEMACOR06T/2022-23

(b) Calculate the lattice energy of Mg(ClO₄)₂ using Kapustinskii equation. Radii of Mg²⁺ and ClO⁴⁻ ions are 86 pm and 226 pm respectively.

3

3

3

2

2

$$K = 1.214 \times 10^{5} \text{ pm.mol}^{-1}$$
.

- (c) $(SiH_3)_3N$ and $(CH_3)_3N$ react with HCl to give different products Explain.
- (d) Solubility trend of fluorides of alkali metals in water are

CsF > RbF > KF > NaF > LiF.

But this trends is reverse for iodides. Explain.

(e) K^+ and F^- have comparable sizes. Which one has the greater hydration energy and why?

(f) Give reasons why:

- (i) BaSO₄ is insoluble in water.
- (ii) Melting point of BaO is high.

UNIT-II

3.	(a)	a) Rationalize the bond lengths of CO (1.128 Å) and CO ⁺ (1.115 Å) with t of MO diagram. Explain the ligating behaviour of CO. Explain why the moment of CO is exceedingly small with the help of MO diagram.	
	(b)	 b) What are the expected changes in bond order and bond distance that accord the following ionisation processes? (i) N₂ → N₂⁺ + e⁻ (ii) NO + e → NO⁻ 	ompany 3
	(c)	c) Why are glass apparatus dried by cleaning with alcohol or acetone? Which more effective and why?	h one is 2+1
	(d)	d) Which type of defects occurs when NiO is heated at 1500 K with exces and the colour turns to black?	s of O_2 2
	(e)	e) Explain the effect of temperature on the variation of conduction of me semiconductors.	etal and 2
4.	(a)	a) Construct the M.O energy level diagram for CO ₂ . Calculate the bond ord it.	er from 4+1
	(b)	b) Between H_2O and H_2O_2 which one has higher boiling point and why?	2
	(c)	c) From the view point of qualitative M.O. description indicate which of th molecules are expected to be stabilized by:	e given 2+2
		(i) Addition of an electron, (ii) Removal of an electron.	
		(A) NO (B) C_2 (C) CN and (D) O_2	
	(d)	 Explain the following variation of colour in the diatomic halogens from the point of HOMO/LUMO concept. 	ne view 3
		F_2 (pale yellow), Cl_2 (greenish yellow), Br_2 (reddish brown) and I_2 (vio	olet)
	(e)	e) Explain the fact that in B_2H_6 , all hydrogens are not identical.	2

3059

UNIT-III

5. (a) Is the ${}_{8}O^{16}$ isotope chemically identical with the ${}_{8}O^{18}$ isotope? Discuss.	2
(b) Predict the mode of decay of the following nuclei: ${}_{6}C^{13}$ and ${}_{15}P^{30}$.	3
(c) Calculate the binding energy per nucleon of the ${}_{18}Ar^{40}$ nucleus. The experimental mass of ${}_{18}Ar^{40}$ is 39.962384 u. $M_{\rm H} = 1.007825$ u; $M_n = 1.008665$ u.	3
 6. (a) Considering the following reaction profile how you would establish that entire oxygen is evolved from either PbO₂ or from H₂O₂? PbO₂ + H₂O₂ → PbO + H₂O + O₂ 	2
(b) ${}_{4}^{9}Be$ is stable but ${}_{5}^{9}B$ is unstable — Why?	1
(c) An Uranium mineral contains 15 g of lead (²⁰⁶ Pb) for each 100 g of Uranium (²³⁸ U) present. What is the age of the mineral? $[t_{1/2} \text{ of } ^{238}\text{U} = 4.2 \times 10^9 \text{ years}]$	3

2

- (d) Complete and then interpret the following nuclear reactions given below:

___X_____